150 research outputs found

    Replication of Marek's Disease Virus Is Dependent on Synthesis of De Novo Fatty Acid and Prostaglandin E2

    Get PDF
    Marek’s disease virus (MDV) causes deadly lymphoma and induces an imbalance of the lipid metabolism in infected chickens. Here, we discovered that MDV activates the fatty acid synthesis (FAS) pathway in primary chicken embryo fibroblasts (CEFs). In addition, MDV-infected cells contained high levels of fatty acids and showed increased numbers of lipid droplets (LDs). Chemical inhibitors of the FAS pathway (TOFA and C75) reduced MDV titers by approximately 30-fold. Addition of the downstream metabolites, including malonyl-coenzyme A and palmitic acid, completely restored the inhibitory effects of the FAS inhibitors. Furthermore, we could demonstrate that MDV infection activates the COX-2/prostaglandin E2 (PGE2) pathway, as evident by increased levels of arachidonic acid, COX-2 expression, and PGE2 synthesis. Inhibition of the COX-2/PGE2 pathway by chemical inhibitors or knockdown of COX2 using short hairpin RNA reduced MDV titers, suggesting that COX-2 promotes virus replication. Exogenous PGE2 completely restored the inhibition of the COX-2/PGE2 pathway in MDV replication. Unexpectedly, exogenous PGE2 also partially rescued the inhibitory effects of FAS inhibitors on MDV replication, suggesting that there is a link between these two pathways in MDV infection. Taken together, our data demonstrate that the FAS and COX-2/PGE2 pathways play an important role in the replication of this deadly pathogen

    Generation, Mutagenesis, and Removal of Mini-F Sequences

    Get PDF
    Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process

    Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences

    Get PDF
    Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process

    A Special Issue on Marek’s Disease Virus - The Editors’ View

    Get PDF
    Marek’s disease virus (MDV), an Alphaherpesvirus belonging to the genus Mardivirus, causes T cell lymphomas in chickens and remains one of the greatest threats to poultry production worldwide. While losses caused by Marek’s disease have been reduced through live-attenuated vaccines, field strains have increased in virulence over recent decades. MDV research has led to a profound understanding of virus-induced pathogenesis and tumor development [1,2,3]. Our goal with this Microorganisms Special Issue on Marek’s disease virus was to collect manuscripts that would provide deeper insights into MDV infection, lytic replication, and latency in vitro and in vivo. Moreover, we assembled reports that provide novel data on pathogenesis, immune system interactions, as well as state-of-the-art concepts to identify approaches to control MDV infections. We were happy to edit seven research articles, three short communications, and a review article on these diverse aspects of MDV infections

    IFNα and IFNγ Impede Marek’s Disease Progression

    Get PDF
    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek’s disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus

    Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology

    Get PDF
    Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres

    Latest Insights into Marek’s Disease Virus Pathogenesis and Tumorigenesis

    Get PDF
    Marek’s disease virus (MDV) infects chickens and causes one of the most frequent cancers in animals. Over 100 years of research on this oncogenic alphaherpesvirus has led to a profound understanding of virus-induced tumor development. Live-attenuated vaccines against MDV were the first that prevented cancer and minimized the losses in the poultry industry. Even though the current gold standard vaccine efficiently protects against clinical disease, the virus continuously evolves towards higher virulence. Emerging field strains were able to overcome the protection provided by the previous two vaccine generations. Research over the last few years revealed important insights into the virus life cycle, cellular tropism, and tumor development that are summarized in this review. In addition, we discuss recent data on the MDV transcriptome, the constant evolution of this highly oncogenic virus towards higher virulence, and future perspectives in MDV research

    Impact of Host Telomere Length on HHV-6 Integration

    Get PDF
    Human herpesvirus 6A and 6B are two closely related viruses that infect almost all humans. In contrast to most herpesviruses, HHV-6A/B can integrate their genomes into the telomeres during the infection process. Both viruses can also integrate in germ cells and subsequently be inherited in children. How HHV-6A/B integrate into host telomeres and the consequences of this remain a subject of active research. Here, we developed a method to measure telomere length by quantitative fluorescence in situ hybridization, confocal microscopy, and computational processing. This method was validated using a panel of HeLa cells having short or long telomeres. These cell lines were infected with HHV-6A, revealing that the virus could efficiently integrate into telomeres independent of their length. Furthermore, we assessed the telomere lengths after HHV-6A integration and found that the virus-containing telomeres display a variety of lengths, suggesting that either telomere length is restored after integration or telomeres are not shortened by integration. Our results highlight new aspects of HHV-6A/B biology and the role of telomere length on virus integration

    The Transcriptional Landscape of Marek’s Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes

    Get PDF
    Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis

    Three-dimensional normal human neural progenitor tissue-like assemblies: A model of persistent Varicella-Zoster virus infection

    Get PDF
    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells
    corecore